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Abstract

Negative effects on wine quality and productivity caused by stuck and sluggish fermentations can be reduced significantly, if such problems
are detected early through periodic chemical analysis. Infrared spectroscopy (IR) has been used successfully for monitoring fermentation:
since many compounds can be measured quickly from a single sample without prior treatment. Nevertheless, few applications of this technolog
in large scale winemaking have been reported, and these do not cover the entire fermentation from must to finished wine. In this work, we
developed IR calibrations for analyzing the fermenting must at any stage of fermentation. The calibration model was obtained with multivariable
partial least squares and proved effective for analyzing Cabernet Sauvignon fermentations for glucose, fructose, glycerol, ethanol, and th
organic acids; malic, tartaric, succinic, lactic, acetic, and citric. Upon external validation we found an average relative predictive error of 4.8%.
Malic acid showed the largest relative predictive error (8.7%). In addition, external validation found that insufficient data for these calibrations
made the analysis of fermenting musts using other grape varieties less reliable.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction suming and expensive, currently these compounds are not
measured frequently enough. This problem is more acute in
In a highly competitive market wineries need to invest large wineries that operate hundreds of fermentation tanks
more in technology, to increase productivity and improve simultaneously.
average quality, to remain competitive. By reducing stuck Infrared spectroscopy offers an alternative to conven-
and sluggish fermentations, which in turn requires a mon- tional chemical analysis. This analytical technique has
itoring system that can detect and classify them early, been applied successfully in other kinds of bioprocess

less wine will be lost or downgraded. Artificial intelli- such as the production of antibiotics and the cultivation of
gence techniques have been applied to predict the resultmammalian cells. In these processes infrared spectroscopy
of other fermentation processes early on (Kamimdra]; has been used for monitoring alanine, glucose, glutamine,

Stephanopoulof3]) by analyzing significant variables over leucine, lactate and ammonium (Ril§§10]; Rhiel [11];
time. Several compounds play a key role in problematic Vaccari [12]; Vaidyanathan[13,14]). Although, we have
wine fermentations, such as sugars, nitrogen substrates anfbound many applications of IR to wine analysis, such as
organic acids (Bissori4,5]; Boulton [6]; Pszczolkowski for controlling denominations of origin, monitoring wines
[7]). As conventional chemical analysis is both time con- during the aging process (Palnja5]), classification of
red-wine dried-extracts according to their geographic origin
* Corresponding author. Tel+56-2-3544258; fax:+56-2-3545803. (Picque[16]) a_md d|scr|m|nat|or! among red wines based
E-mail addresspereza@ing.puc.cl (J. Ricard@mz-Correa). on the analysis of their phenolic extracts (Edelnjan]),
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we have not found any reference to the monitoring of large (PLS). Both packages were developed by CETIM, France
scale wine fermentations. One report though, does describe(http://perso.wanadoo.fr/cetim2/gb/cetlagex gb.html).

the application of IR to study the effect of fermentation

temperature over time on significant metabolites such as2.3. Model development

glucose, fructose, glycerol and ethanol during winemak-

ing in a lab scale fermentor (10L), using artificial musts  In this work, we applied PLS for model calibration since
(Fayolle[18]) with different initial sugar concentrations. In-  this method has been successfully applied in many biopro-
frared spectroscopy has also been applied to analyze mustsesses for this type of problem (Ril¢§,10]; Vaidyanathan

for 40 different wine varieties from three different regions [13,14]; Fayolle[18]). PLS has shown strong predictive ca-
of the world for determining glucose, fructose, glycerol, pacity for unknown samples (Marter&1]; Burns [22]).
ethanol, total acidity, volatile acidity, malic acid, acetic These are reduced dimension multivariable linear models.
acid, tartaric acid, lactic acid, pH and sucrose (Dubernet Their structure is defined by the number of PLS factors
[19,20]). which is the same for input and output spaces.

In this work we use IR analysis and develop specific cali-  Internal cross validation is used to establish the optimum
brations for monitoring glucose, fructose, glycerol, ethanol, number of PLS factors. Here, samples used for calibration
and the organic acids malic, tartaric, succinic, lactic, acetic, are also employed for validation. We used the “leave and
and citric during large scale wine fermentations of Cabernet out” algorithm, where the calibration is repeated several
Sauvignon. times omitting a subgroup of samples each iteration. The

whole procedure is repeated for different PLS factor num-
bers and the best model structure is determined by the low-

2. Materials and methods est standard error of cross validation (SECV). An optimum
number of PLS factors was found for each compound, al-
2.1. Sampling and analysis though we tried to limit the number to 15 factors. Ideally,

the selected model structure should have a correlation co-

Samples of 100 mL were collected every 8h from large efficient larger than 0.985. When spectra were pre-treated,
scale fermentation tanks (40 and 6®)nn a winery from its first derivative was taken. Up to 10% of samples were
Chile’s Central Valley in 2002. Four fermentation runs of deleted since they were outside the working range.
Cabernet Sauvignon and one fermentation run each of Syrah, In the calibration step, the model parameters were fitted
Pinot Noir, Merlot and Carmenere, were followed until they using the optimal number of PLS factors, using the sum
finished. Each run includes between 30 and 35 samples. Aof squares of the prediction errors (PRESS) as optimization
total of 273 samples were collected, frozen and stored atcriteria.
—20°C until they were analyzed. Finally, an external validation was used to test the predic-

Reference analyses for glucose and fructose were per-tive power of the model. Here, samples not included in the
formed by HPLC using a Waters high performance carbo- model calibration were used to compute the prediction ab-
hydrate cartridge (Waters Corporation, USA), while for or- solute error and prediction relative error. The absolute error
ganic acids, glycerol and ethanol a BioRad HPX-87H col- is the average of the difference between the predicted value

umn was used. provided by the FT-IR equipment and the reference value
given by the HPLC for the external validation set. Relative
2.2. Infrared equipment and software error is the absolute error divided by the measurement span,

expressed as a percentage.
Acquisition of the samples’ spectra was performed with
Fourier transform infrared (FT-IR) multispec equipment 1apie 1
(module FT-IR AVATAR 360 NICOLET) equipped with @  Results of CR calibration
DTGS KBr detector. The spectral resolution was 0.5ém

Compound Calibration Concentration

Triplicate spectra were acquired in two spectral ranges, 2 PLS SECY range (g1
200-740 nm and 1350-28500 nm, for each sample and the factors  (gL~Y)
spectra averaged. This equlpm_ent_ can handle between 6@, o cc 0.994 3 34 0-125
and 80 samples per hour. The liquid sample (15 mL) needsfgryctose 0.994 9 4.9 0-133
to be centrifuged or filtered prior to acquiring the spectra. Alcoholic degree  0.99 9 12 0-15.4
Bacchus Acquisitiosoftware was used to define measure- Glycerol 0.988 9 0.66 0-11
ment parameters. Malic _aC|d_ 0.985 13 0.32 0-4.57
Spectra processing (first or second derivative centeredTartarlc acid 0.987 12 0-24 0-2.62
pectra p g ( : 1 C Succinic acid 0982 9 0.67 0-10.97
media, and reduced variance) were carried out \Bittt- Citric acid 0985 10 0.08 0-0.85
chus Quantificatiorsoftware, which develops calibrations Lactic acid 0.989 13 0.12 0-1.03
for several compounds simultaneously, using either mul- Acetic acid 0.988 14 0.18 0-2.3

tiple linear regression (MLR) or partial least squares a9 (viv).
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We called the calibration obtained with the above pro- samples for the two sets were selected at random, taking care
cedure complete range (CR) and its performance using theto ensure that each set included samples, that covered the
validation set is compared with two default calibrations that entire range of concentration for each compound (as shown
are included in the Bacchus equipment, must and wine, bothin Table 1).
obtained using many samples of unfermented must and fin-
ished wines from all over the world.

3. Results and discussion
2.4. Experimental methodology
The results of CR calibration and its validation, for Caber-

The 273 samples collected from the winery were divided net Sauvignon and for the other varieties grouped together
into two different sets, destining 200 for calibration (73%) (Merlot, Pinot Noir, Syrah and Carmenere), are shown and
and internal cross validation, and 73 for external validation discussed in this section. In addition, the performance of
(27%). On average, 22 samples of each run were used forCR calibration at monitoring full fermentations of Caber-
calibration and eight samples for external validation. The net Sauvignon and Syrah musts is illustrated and compared
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Fig. 1. Concentration correlation plots for CR calibration for: (a) glucose and (b) fructose in Cabernet Sauvignon samples.
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respectively.

In Cabernet Sauvignon samples the lowest ARE predic-
tion occurred with glucose, fructose and tartaric acid, while
glucose, fructose and citric acid presented the smallest MRE
prediction. Although the models for fructose and glucose
present a good predictive power and both sugars used theare good (<5%). Maximum deviations are reasonable also,
same concentration range, the AAE for fructose is larger with values lower than 14%.
than the AAE for glucose. The latter is probably due to some  Validation of the samples from other varieties returned
spectral interference between fructose and another compo-+oorer results. Although the average error isnot much higher
nent in wine. than for the Cabernet Sauvignon- due to smaller errors for

For the remaining components except for ethanol, glyc- ethanol, glycerol and malic acid- for most compounds aver-
erol, succinic and malic acids, the average prediction errorsage errors were over 5%. Maximum errors proved far higher

Fig. 2. Comparison between CR, must and wine calibrations, with the
reference analysis for: (a) fructose, (b) alcohol content in Cabernet Sauvi-

Table 2

Results of external validation for Cabernet Sauvignon samples

Component Average absolute Maximum absolute Average relative error Maximum relative
error (AAE) (gL™1) error (MAE) (gL™1) (ARE) (%) error (MRE) (%)

Glucose 2.0 4.7 15 3.6

Fructose 3.0 12 2.3 9.0

Alcoholic degree (%, v/v) 0.91 21 5.8 134

Glycerol 0.74 15 6.7 134

Malic acid 0.34 0.52 8.7 13.3

Tartaric acid 0.11 0.34 34 10.9

Succinic acid 0.73 1.6 6.6 13.7

Citric acid 0.12 0.24 4.6 9.5

Lactic acid 0.07 0.25 4.2 14.2

Acetic acid 0.15 0.36 4.8 11.6

Average 4.8 11.3
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Table 3
Results of external validation for other varieties samples

Component Average absolute Maximum absolute Average relative error Maximum relative
error (AAE) (gL™1) error (MAE) (gL~ 1) (ARE) (%) error (MRE) (%)
Glucose 31 16.3 23 123
Fructose 42 17.7 32 136
Alcoholic degree (%, v/v) 0.82 19 52 118
Glycerol 0.64 17 5.8 152
Malic acid 0.29 0.56 74 145
Tartaric acid 0.21 0.40 6.8 13.0
Succinic acid 0.83 1.6 6.9 135
Citric acid 0.10 0.25 4.0 9.6
Lactic acid 0.11 0.23 6.4 131
Acetic acid 021 0.46 6.6 14.9
Average 55 13.2

in the other varieties, and particularly for glucose and fruc-
tose. Even glycerol and malic acid present larger maximum
errors than in Cabernet Sauvignon samples.

3.3. Monitoring the entire fermentation process

Fig. 2 shows the performance of three calibrations (must,
wine and CR), as compared with the reference analysis
during a whole fermentation of 340h for the Cabernet
Sauvignon variety. For fructose and alcohol content, good
agreement was achieved between CR estimation and the
reference anaysis; however, the default calibrations (must
and wine) performed badly. Fig. 2a shows that must cali-
bration only provides a reasonable estimation for fructose
over the first 100h of fermentation. On the other hand,
the wine calibration just yields good estimates over the
final 160h. Only the CR calibration provides good esti-
mates of fructose from 100 to 200h of fermentation. The
must calibration works well only at the beginning (up to
90h), while the wine calibration consistently under pre-
dicted alcohol content even at the end of the fermentation
(Fig. 2b). Estimations of the remaining components studied
in Cabernet Sauvignon behaved like the ones shown in the
figure.

CR calibration performance of glycerol (a) and succinic
acid (b) in a Syrah fermentation is illustrated in Fig. 3.
Syrah presented the best performance compared with the
other varieties (excluding Cabernet Sauvignon) in this study.
On average, there is good agreement between CR estimates
and reference analysis; however, in some points, highlighted
with circles in the graphs, differences between CR estima-
tions and reference values are large. These large differences
can aso be observed in the externa validation set of the
other varieties group (Table 3) for amost all components.
The small number of samples of these wines used in the cal-
ibration can explain these large errors. Of the 200 samples
used for calibration, 90 samples corresponded to Cabernet
Sauvignon (four fermentation runs) while the other varieties
contributed with less than 30 samples each (one fermenta-
tion run). According to Fayolle et a. [18] and Rhiel et al.
[11], four fermentation runs (100 samples approximately)

do provide enough data to obtain good calibration. In ad-
dition, Riley et a. [9] suggest that the number of calibra-
tion samples required should be approximately six times the
number of varying components and for monitoring biolog-
ical processes, between 70 and 100 samples for calibration
are recommended. Therefore, CR calibration can be applied
with confidence to Cabernet Sauvignon wines only.
Regarding early detection of problematic (stuck and slug-
gish) wine fermentations, the monitoring system using IR
spectroscopy provides sufficient precision to distinguish be-
tween normal or problematic behavior, as illustrated below

(Fig. 4):
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Fig. 3. Comparison between CR calibrations and the reference analysis
for: (a) glycerol and (b) succinic acid in Syrah.
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Fig. 4. Wine fermentations of Cabernet Sauvignon using CR calibrations for: (a) fructose, (b) lactic acid, (c) acetic acid, (d) succinic acid, and (e) malic

acid.

Fig. 4 shows the evolution of severa components during
a normal and a problematic fermentation. The latter took
two extra days to reach a residual sugar lower than 4gL—1
(Fig. 4a). Clearly, the precision of the CR calibration for the
first four components is sufficient to distinguish between
both fermentations. Lactic acid (Fig. 4b) presented a dif-
ferent behavior in both fermentations throughout the whole
process, while acetic acid (Fig. 4c) behaved differently only
after 100 h of fermentation and succinic acid showed a dif-
ferent evolution before 100 h. On the other hand, the preci-
sion of the CR calibration for malic acid is not good enough
to distinguish between the normal and the problematic
behavior.

4, Conclusions

In this study, we verified that FT-IR spectroscopy is a
useful analytical tool for monitoring industrial wine fermen-
tations. The developed CR calibration provided good esti-
mations for glucose, fructose, organic acids, glycerol and
ethanol during the entire fermentation of Cabernet Sauvi-
gnon musts in a given winery located in the Central Valley
of Chile. The small estimation errors achieved for most of
the components included in this study alowed distinction
between a normal and a problematic fermentation. We are
currently analyzing the evolution of these components in
more than 60 Cabernet Sauvignon fermentations in order to
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find common patterns in problematic and normal fermenta-
tions.

The calibration obtained was not applicableto Syrah, Mer-
lot, Pinot Noir and Carmenere, since not enough samples
of these varieties were available for the calibration, result-
ing in large estimation errors in many samples. We also de-
termined that the default calibrations, must and wine, were
unsuitable for monitoring an entire fermentation.

To generalize the results shown here, it is necessary to
significantly increase the number of reference samples, in-
corporating more varieties and eventually other wineries. Al-
ternatively, a calibration similar to the one developed in this
study, can be obtained providing small prediction errors us-
ing relatively few samples, although the calibration obtained
would be limited to a specific winery and a specific variety.
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