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Abstract

Negative effects on wine quality and productivity caused by stuck and sluggish fermentations can be reduced significantly, if such problems
are detected early through periodic chemical analysis. Infrared spectroscopy (IR) has been used successfully for monitoring fermentations,
since many compounds can be measured quickly from a single sample without prior treatment. Nevertheless, few applications of this technology
in large scale winemaking have been reported, and these do not cover the entire fermentation from must to finished wine. In this work, we
developed IR calibrations for analyzing the fermenting must at any stage of fermentation. The calibration model was obtained with multivariable
partial least squares and proved effective for analyzing Cabernet Sauvignon fermentations for glucose, fructose, glycerol, ethanol, and the
organic acids; malic, tartaric, succinic, lactic, acetic, and citric. Upon external validation we found an average relative predictive error of 4.8%.
Malic acid showed the largest relative predictive error (8.7%). In addition, external validation found that insufficient data for these calibrations
made the analysis of fermenting musts using other grape varieties less reliable.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In a highly competitive market wineries need to invest
more in technology, to increase productivity and improve
average quality, to remain competitive. By reducing stuck
and sluggish fermentations, which in turn requires a mon-
itoring system that can detect and classify them early,
less wine will be lost or downgraded. Artificial intelli-
gence techniques have been applied to predict the result
of other fermentation processes early on (Kamimura[1,2];
Stephanopoulos[3]) by analyzing significant variables over
time. Several compounds play a key role in problematic
wine fermentations, such as sugars, nitrogen substrates and
organic acids (Bisson[4,5]; Boulton [6]; Pszczólkowski
[7]). As conventional chemical analysis is both time con-
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suming and expensive, currently these compounds are not
measured frequently enough. This problem is more acute in
large wineries that operate hundreds of fermentation tanks
simultaneously.

Infrared spectroscopy offers an alternative to conven-
tional chemical analysis. This analytical technique has
been applied successfully in other kinds of bioprocess
such as the production of antibiotics and the cultivation of
mammalian cells. In these processes infrared spectroscopy
has been used for monitoring alanine, glucose, glutamine,
leucine, lactate and ammonium (Riley[8–10]; Rhiel [11];
Vaccari [12]; Vaidyanathan[13,14]). Although, we have
found many applications of IR to wine analysis, such as
for controlling denominations of origin, monitoring wines
during the aging process (Palma[15]), classification of
red-wine dried-extracts according to their geographic origin
(Picque[16]) and discrimination among red wines based
on the analysis of their phenolic extracts (Edelman[17]),
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we have not found any reference to the monitoring of large
scale wine fermentations. One report though, does describe
the application of IR to study the effect of fermentation
temperature over time on significant metabolites such as
glucose, fructose, glycerol and ethanol during winemak-
ing in a lab scale fermentor (10 L), using artificial musts
(Fayolle[18]) with different initial sugar concentrations. In-
frared spectroscopy has also been applied to analyze musts
for 40 different wine varieties from three different regions
of the world for determining glucose, fructose, glycerol,
ethanol, total acidity, volatile acidity, malic acid, acetic
acid, tartaric acid, lactic acid, pH and sucrose (Dubernet
[19,20]).

In this work we use IR analysis and develop specific cali-
brations for monitoring glucose, fructose, glycerol, ethanol,
and the organic acids malic, tartaric, succinic, lactic, acetic,
and citric during large scale wine fermentations of Cabernet
Sauvignon.

2. Materials and methods

2.1. Sampling and analysis

Samples of 100 mL were collected every 8 h from large
scale fermentation tanks (40 and 60 m3) in a winery from
Chile’s Central Valley in 2002. Four fermentation runs of
Cabernet Sauvignon and one fermentation run each of Syrah,
Pinot Noir, Merlot and Carmenere, were followed until they
finished. Each run includes between 30 and 35 samples. A
total of 273 samples were collected, frozen and stored at
−20◦C until they were analyzed.

Reference analyses for glucose and fructose were per-
formed by HPLC using a Waters high performance carbo-
hydrate cartridge (Waters Corporation, USA), while for or-
ganic acids, glycerol and ethanol a BioRad HPX-87H col-
umn was used.

2.2. Infrared equipment and software

Acquisition of the samples’ spectra was performed with
Fourier transform infrared (FT-IR) multispec equipment
(module FT-IR AVATAR 360 NICOLET) equipped with a
DTGS KBr detector. The spectral resolution was 0.5 cm−1.
Triplicate spectra were acquired in two spectral ranges,
200–740 nm and 1350–28500 nm, for each sample and the
spectra averaged. This equipment can handle between 60
and 80 samples per hour. The liquid sample (15 mL) needs
to be centrifuged or filtered prior to acquiring the spectra.
Bacchus Acquisitionsoftware was used to define measure-
ment parameters.

Spectra processing (first or second derivative, centered
media, and reduced variance) were carried out withBac-
chus Quantificationsoftware, which develops calibrations
for several compounds simultaneously, using either mul-
tiple linear regression (MLR) or partial least squares

(PLS). Both packages were developed by CETIM, France
(http://perso.wanadoo.fr/cetim2/gb/cetlabindex gb.html).

2.3. Model development

In this work, we applied PLS for model calibration since
this method has been successfully applied in many biopro-
cesses for this type of problem (Riley[8,10]; Vaidyanathan
[13,14]; Fayolle[18]). PLS has shown strong predictive ca-
pacity for unknown samples (Martens[21]; Burns [22]).
These are reduced dimension multivariable linear models.
Their structure is defined by the number of PLS factors
which is the same for input and output spaces.

Internal cross validation is used to establish the optimum
number of PLS factors. Here, samples used for calibration
are also employed for validation. We used the “leave and
out” algorithm, where the calibration is repeated several
times omitting a subgroup of samples each iteration. The
whole procedure is repeated for different PLS factor num-
bers and the best model structure is determined by the low-
est standard error of cross validation (SECV). An optimum
number of PLS factors was found for each compound, al-
though we tried to limit the number to 15 factors. Ideally,
the selected model structure should have a correlation co-
efficient larger than 0.985. When spectra were pre-treated,
its first derivative was taken. Up to 10% of samples were
deleted since they were outside the working range.

In the calibration step, the model parameters were fitted
using the optimal number of PLS factors, using the sum
of squares of the prediction errors (PRESS) as optimization
criteria.

Finally, an external validation was used to test the predic-
tive power of the model. Here, samples not included in the
model calibration were used to compute the prediction ab-
solute error and prediction relative error. The absolute error
is the average of the difference between the predicted value
provided by the FT-IR equipment and the reference value
given by the HPLC for the external validation set. Relative
error is the absolute error divided by the measurement span,
expressed as a percentage.

Table 1
Results of CR calibration

Compound Calibration Concentration
range (g L−1)r2 PLS

factors
SECV
(g L−1)

Glucose 0.994 3 3.4 0–125
Fructose 0.994 9 4.9 0–133
Alcoholic degree 0.99 9 1.1a 0–15.4a

Glycerol 0.988 9 0.66 0–11
Malic acid 0.985 13 0.32 0–4.57
Tartaric acid 0.987 12 0.24 0–2.62
Succinic acid 0.982 9 0.67 0–10.97
Citric acid 0.985 10 0.08 0–0.85
Lactic acid 0.989 13 0.12 0–1.03
Acetic acid 0.988 14 0.18 0–2.3

a In % (v/v).
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We called the calibration obtained with the above pro-
cedure complete range (CR) and its performance using the
validation set is compared with two default calibrations that
are included in the Bacchus equipment, must and wine, both
obtained using many samples of unfermented must and fin-
ished wines from all over the world.

2.4. Experimental methodology

The 273 samples collected from the winery were divided
into two different sets, destining 200 for calibration (73%)
and internal cross validation, and 73 for external validation
(27%). On average, 22 samples of each run were used for
calibration and eight samples for external validation. The

Fig. 1. Concentration correlation plots for CR calibration for: (a) glucose and (b) fructose in Cabernet Sauvignon samples.

samples for the two sets were selected at random, taking care
to ensure that each set included samples, that covered the
entire range of concentration for each compound (as shown
in Table 1).

3. Results and discussion

The results of CR calibration and its validation, for Caber-
net Sauvignon and for the other varieties grouped together
(Merlot, Pinot Noir, Syrah and Carmenere), are shown and
discussed in this section. In addition, the performance of
CR calibration at monitoring full fermentations of Caber-
net Sauvignon and Syrah musts is illustrated and compared
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with the default calibrations from must and wine and with
the reference analysis.

3.1. Calibration

Table 1summarizes the results of the CR calibration ob-
tained through cross validation and includes the concentra-
tion range for each component.

All components present a good fit showing low standard
deviations and good correlation, even though a relatively
high number of PLS factors were needed. Only glucose re-
quired a small number of PLS factors and incidentally also
showed the best fit.

The concentration correlation plots of the CR calibration
are presented for glucose and fructose inFig. 1. Both sets of
measurements provide good agreement between predicted
values and reference values. The other components showed
similar trends.

3.2. Validation

To address the accuracy of measurements, the results of
validation are expressed in terms of absolute average error
(AAE), maximum absolute error (MAE), average relative
error (ARE) and maximum relative error (MRE).Tables 2
and 3summarize the validation results using CR calibration
for samples of Cabernet Sauvignon and the other varieties,
respectively.

In Cabernet Sauvignon samples the lowest ARE predic-
tion occurred with glucose, fructose and tartaric acid, while
glucose, fructose and citric acid presented the smallest MRE
prediction. Although the models for fructose and glucose
present a good predictive power and both sugars used the
same concentration range, the AAE for fructose is larger
than the AAE for glucose. The latter is probably due to some
spectral interference between fructose and another compo-
nent in wine.

For the remaining components except for ethanol, glyc-
erol, succinic and malic acids, the average prediction errors

Table 2
Results of external validation for Cabernet Sauvignon samples

Component Average absolute
error (AAE) (g L−1)

Maximum absolute
error (MAE) (g L−1)

Average relative error
(ARE) (%)

Maximum relative
error (MRE) (%)

Glucose 2.0 4.7 1.5 3.6
Fructose 3.0 12 2.3 9.0
Alcoholic degree (%, v/v) 0.91 2.1 5.8 13.4
Glycerol 0.74 1.5 6.7 13.4
Malic acid 0.34 0.52 8.7 13.3
Tartaric acid 0.11 0.34 3.4 10.9
Succinic acid 0.73 1.6 6.6 13.7
Citric acid 0.12 0.24 4.6 9.5
Lactic acid 0.07 0.25 4.2 14.2
Acetic acid 0.15 0.36 4.8 11.6

Average 4.8 11.3
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Fig. 2. Comparison between CR, must and wine calibrations, with the
reference analysis for: (a) fructose, (b) alcohol content in Cabernet Sauvi-
gnon.

are good (<5%). Maximum deviations are reasonable also,
with values lower than 14%.

Validation of the samples from other varieties returned
poorer results. Although the average error is not much higher
than for the Cabernet Sauvignon- due to smaller errors for
ethanol, glycerol and malic acid- for most compounds aver-
age errors were over 5%. Maximum errors proved far higher
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Table 3
Results of external validation for other varieties samples

Component Average absolute
error (AAE) (g L−1)

Maximum absolute
error (MAE) (g L−1)

Average relative error
(ARE) (%)

Maximum relative
error (MRE) (%)

Glucose 3.1 16.3 2.3 12.3
Fructose 4.2 17.7 3.2 13.6
Alcoholic degree (%, v/v) 0.82 1.9 5.2 11.8
Glycerol 0.64 1.7 5.8 15.2
Malic acid 0.29 0.56 7.4 14.5
Tartaric acid 0.21 0.40 6.8 13.0
Succinic acid 0.83 1.6 6.9 13.5
Citric acid 0.10 0.25 4.0 9.6
Lactic acid 0.11 0.23 6.4 13.1
Acetic acid 0.21 0.46 6.6 14.9

Average 5.5 13.2

in the other varieties, and particularly for glucose and fruc-
tose. Even glycerol and malic acid present larger maximum
errors than in Cabernet Sauvignon samples.

3.3. Monitoring the entire fermentation process

Fig. 2 shows the performance of three calibrations (must,
wine and CR), as compared with the reference analysis
during a whole fermentation of 340 h for the Cabernet
Sauvignon variety. For fructose and alcohol content, good
agreement was achieved between CR estimation and the
reference analysis; however, the default calibrations (must
and wine) performed badly. Fig. 2a shows that must cali-
bration only provides a reasonable estimation for fructose
over the first 100 h of fermentation. On the other hand,
the wine calibration just yields good estimates over the
final 160 h. Only the CR calibration provides good esti-
mates of fructose from 100 to 200 h of fermentation. The
must calibration works well only at the beginning (up to
90 h), while the wine calibration consistently under pre-
dicted alcohol content even at the end of the fermentation
(Fig. 2b). Estimations of the remaining components studied
in Cabernet Sauvignon behaved like the ones shown in the
figure.

CR calibration performance of glycerol (a) and succinic
acid (b) in a Syrah fermentation is illustrated in Fig. 3.
Syrah presented the best performance compared with the
other varieties (excluding Cabernet Sauvignon) in this study.
On average, there is good agreement between CR estimates
and reference analysis; however, in some points, highlighted
with circles in the graphs, differences between CR estima-
tions and reference values are large. These large differences
can also be observed in the external validation set of the
other varieties group (Table 3) for almost all components.
The small number of samples of these wines used in the cal-
ibration can explain these large errors. Of the 200 samples
used for calibration, 90 samples corresponded to Cabernet
Sauvignon (four fermentation runs) while the other varieties
contributed with less than 30 samples each (one fermenta-
tion run). According to Fayolle et al. [18] and Rhiel et al.
[11], four fermentation runs (100 samples approximately)

do provide enough data to obtain good calibration. In ad-
dition, Riley et al. [9] suggest that the number of calibra-
tion samples required should be approximately six times the
number of varying components and for monitoring biolog-
ical processes, between 70 and 100 samples for calibration
are recommended. Therefore, CR calibration can be applied
with confidence to Cabernet Sauvignon wines only.

Regarding early detection of problematic (stuck and slug-
gish) wine fermentations, the monitoring system using IR
spectroscopy provides sufficient precision to distinguish be-
tween normal or problematic behavior, as illustrated below
(Fig. 4):
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Fig. 3. Comparison between CR calibrations and the reference analysis
for: (a) glycerol and (b) succinic acid in Syrah.
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Fig. 4. Wine fermentations of Cabernet Sauvignon using CR calibrations for: (a) fructose, (b) lactic acid, (c) acetic acid, (d) succinic acid, and (e) malic
acid.

Fig. 4 shows the evolution of several components during
a normal and a problematic fermentation. The latter took
two extra days to reach a residual sugar lower than 4 g L−1

(Fig. 4a). Clearly, the precision of the CR calibration for the
first four components is sufficient to distinguish between
both fermentations. Lactic acid (Fig. 4b) presented a dif-
ferent behavior in both fermentations throughout the whole
process, while acetic acid (Fig. 4c) behaved differently only
after 100 h of fermentation and succinic acid showed a dif-
ferent evolution before 100 h. On the other hand, the preci-
sion of the CR calibration for malic acid is not good enough
to distinguish between the normal and the problematic
behavior.

4. Conclusions

In this study, we verified that FT-IR spectroscopy is a
useful analytical tool for monitoring industrial wine fermen-
tations. The developed CR calibration provided good esti-
mations for glucose, fructose, organic acids, glycerol and
ethanol during the entire fermentation of Cabernet Sauvi-
gnon musts in a given winery located in the Central Valley
of Chile. The small estimation errors achieved for most of
the components included in this study allowed distinction
between a normal and a problematic fermentation. We are
currently analyzing the evolution of these components in
more than 60 Cabernet Sauvignon fermentations in order to



784 A. Urtubia et al. / Talanta 64 (2004) 778–784

find common patterns in problematic and normal fermenta-
tions.

The calibration obtained was not applicable to Syrah, Mer-
lot, Pinot Noir and Carmenere, since not enough samples
of these varieties were available for the calibration, result-
ing in large estimation errors in many samples. We also de-
termined that the default calibrations, must and wine, were
unsuitable for monitoring an entire fermentation.

To generalize the results shown here, it is necessary to
significantly increase the number of reference samples, in-
corporating more varieties and eventually other wineries. Al-
ternatively, a calibration similar to the one developed in this
study, can be obtained providing small prediction errors us-
ing relatively few samples, although the calibration obtained
would be limited to a specific winery and a specific variety.
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